Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
Chinese Journal of Applied Physiology ; (6): 208-212, 2014.
Article in Chinese | WPRIM | ID: wpr-236345

ABSTRACT

<p><b>OBJECTIVE</b>To explore the effects of arecoline on hepatic insulin resistance in type 2 diabetes rats and to elucidate its possible mechanism.</p><p><b>METHODS</b>Forty five Wistar rats were fed with high fructose diet for 12 weeks to induce type 2 diabetic rat model. rats were randomly divided into 5 groups (n = 8): control group, model group and model group were treated with different dose (0, 0.5, 1, 5 mg/kg) of arecoline. After 4 weeks, the fasting blood glucose, blood lipid and insulin level measured , mRNA expression of liver constitutive androstane receptor (CAR), pregnane X receptor (PXR), glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were detected by reverse transcription polymerase chain reaction (RT-PCR), the protein expression of p-AKT and glucose transporter4 (GLUT4) were detected by Western blot.</p><p><b>RESULTS</b>1.5 mg/kg arecoline could significantly decrease the level of fasting blood glucose, blood lipid, blood insulin level and liver G6Pase, PEPCK, IL-6, TNF-alpha mRNA level in type 2 diabetes rats. 1.5 mg/kg arecoline also could significantly increase CAR, PXR mRNA level and p-AKT and GLUT4 protein expression.</p><p><b>CONCLUSION</b>Arecoline improved hepatic insulin resistance in type 2 diabetes rats by increasing the mRNA levels of CAR and PXR leading to the creased glucose metabolism and inflammation related genes expression.</p>


Subject(s)
Animals , Male , Rats , Arecoline , Pharmacology , Diabetes Mellitus, Experimental , Metabolism , Diabetes Mellitus, Type 2 , Metabolism , Glucose Transporter Type 4 , Metabolism , Glucose-6-Phosphatase , Metabolism , Insulin Resistance , Interleukin-6 , Metabolism , Intracellular Signaling Peptides and Proteins , Metabolism , Liver , Metabolism , Phosphoenolpyruvate Carboxykinase (GTP) , Metabolism , Proto-Oncogene Proteins c-akt , Metabolism , Rats, Wistar , Receptors, Cytoplasmic and Nuclear , Metabolism , Receptors, Steroid , Metabolism , Tumor Necrosis Factor-alpha , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL